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Motivation:

COVID-19 emerged in Wuhan (China) at the end of 2019 and was declared a pandemic by

the World Health Organization in March 2020.

With more than 2.5 million deaths worldwide as of late February 2021, COVID-19 has

been a defining health crisis and has impacted people’s everyday lives in countless ways.

One of the most noteworthy circumstances of the COVID-19 outbreak in the United States

was the closure of virtually all schools throughout the country.

Since their closure, one of the most pressing issues pertaining to COVID-19 is how to

properly reopen schools without sparking a surge in cases throughout the community.

Currently, the situation is highly heterogeneous with even nearby schools adopting

alternative strategies.

The prolonged school closure has been shown to negatively affect student learning

experience and to be the cause of serious mental illnesses, such as anxiety and depression.

Dataset and Software

Data is taken from the Indiana Data Hub, updated to Dec. 28th, 2020. This dataset includes

COVID-19 student cases broken down by school.

The analysis and the simulations utilized the software R and the package deSolve.

Our Analysis

We will concentrate on a couple of distinct models with the intent of capturing important fac-

tors in the diffusion of the coronavirus in Indiana’s secondary school system. For the sake of

interpretability, we confined our analysis to the simplest models capturing the phenomenon

under study.

Conditional Gaussian Model.

In the first model, we analyze the number of cases in each school, subdividing them by county.

The distribution of the number of cases in schools within a given county is modeled with a

Conditional Gaussian Distribution; namely, we model the number of cases in each county as

a linear function of the sum of the student cases in that county plus a Gaussian error.

Age Structured Compartmental Model.

The second model is a compartmental model with age structure (4 compartments of young

interacting with 4 compartments of adults). Compartmental models are models in which the

population is divided into mutually exclusive and exhaustive classes, and the spread is modeled

through a system of coupled ODEs describing the evolution of the disease across compart-

ments.

Conditional Gaussian Model

We considered the number of student cases yi in Indiana's county i and the sum number of

cases per secondary school xi in county i for i = 1, . . . , 92, with 92 the number of counties in

Indiana. Our model is a simple linear regression model of the form yi = β0 + β1xi + εi with

the xi considered non-stochastic, E[εi] = 0, εi ∼ N(0, σ2) and εi independent and identically

distributed for i = 1, . . . , 92. Although our analysis was comprehensive of 1) mean and sum for

students/teachers/employees/all of them [8 models], 2) Conditional Gaussian/Poisson/Negative

Binomial for each model with Outlier detection at 1-2-3 st. dev., 3) Cooks distance for all models,

and 4) Non- parametric outlier detection tests for all models, for space reasons, we report in this

poster only the result on the relationship between the sum of student cases per county.

Age-structured SEIR model

We considered the following SEIR model with two age-groups: children vs adults. We have the

following system of coupled differential equations:

(SEIR2)


dS1
dt = −S1 (β11I1 + β21I2)

dE1
dt = S1 (β11I1 + β21I2) − σ1E1

dI1
dt = σ1E1 − γ1I1
dR1
dt = γ1I1


dS2
dt = −S2 (β12I1 + β22I2)

dE2
dt = S2 (β12I1 + β22I2) − σ2E2

dI2
dt = σ2E2 − γ2I2
dR1
dt = γ2I2

(1)

Here Si(t), Ei(t), Ii(t), Ri(t) ∈ C1([0, +∞)). To fix the ideas: i = 1 represents the children age

group and i = 2 the adult age group with Si(t), Ei(t), Ii(t), Ri(t) the corresponding susceptible,

exposed, infective, and removed individuals of age group i. The following theorem implies that

SEIR2 gives biologically meaningful solutions for all times t.

Theorem

For every 0 ≤ Si0, Ei0, Ii0, Ri0 ≤ 1 i = 1, 2 such that Si0 + Ei0 + Ii0 + Ri0 = 1 for i = 1, 2, there exists

a unique solution to system (SEIR2) such that Ii(0) = Ii0, Ei(0) = Ei0, Ii(0) = Ii0, Ri(0) = Ri0,
0 ≤ Si(t), Ei(t), Ii(t), Ri(t) ≤ 1 for i = 1, 2, and Si(t) + Ei(t) + Ii(t) + Ri(t) = 1 for i = 1, 2.

Sketch of the Proof By Picard–Lindelöf existence and uniqueness theorem, there is a unique

smooth solution local in time. Summing the equations in each system, we deduce that the

population is conserved. Since the total population is conserved Si(t) + Ei(t) + Ii(t) + Ri(t) =
Si0 +Ei0 +Ii0 +Ri0 = 1. Therefore, the solution is global in time. By its equation, S1 is decreasing.
By taking the ratio between

dS1(t)
dt and

dR1(t)
dt and integrating from 0 to +∞, we get by conservation

of total population:

S1∞
S10

= e

{
−
[

β11
γ1

R1∞+β21
γ2

R2∞
]}

and so S1∞ ≥ S10e

{
−
[

β11
γ1

R1∞+β21
γ2

R2∞
]}

> 0.

This applies similarly for the second age-group and analogously for the other compartments.

Simulations

In our simulations, we will use the population values for Indiana and the epidemiological param-

eters in Table 1.

State Description Range/Estimate Base Case

β11 child-to-child [0.05-2] 0.1

β12 child-to-adult [0.05-2] 0.5

β21 adult-to-child [0.05-2] 0.5

β22 adult-to-adult [0.05-2] 0.5

1/σ1 child latent 3 3

1/σ2 adult latent 3 3

1/γ1 child infectious 4 4

1/γ2 adult infections 4 4

Table 1:This table provides the parameter values for our 17 simulations. The β's are the transmission coefficients,

whose range are given per day. The latent and infectious periods are in days.

As an example, we report the simulations forAllen County, which is characterized by the following

parameters: children population (≤ 17) n1 = 97, 101, adult population n2 = 282, 198 (> 17), and
initial conditions for the eight compartments: S10 = 97, 099/n1, E10 = 2/n1, I10 = 0, R10 = 0, S20 =
282, 195/n2, E20 = 2/n2, I20 = 1/n2, R20 = 0.

Results

Conditional Gaussian Model. Interestingly, the number of cases per county is roughly 30 times

the sum of the student cases in each county. This value is stable across counties. The estimate

of the slope coefficient β̂1 = 29.694 gives significance of the predictor with p-value < 2 ∗ 10−16.

Age-structured model. The most interesting models had the smallest or the greatest proportion

of each age group having contracted COVID-19. Extreme cases 1, 3, and 4 depicted optimal

outcomes in which less than 5% of either age group have contracted the disease by the end of a

90 days period (Figure 1). The most calamitous outcomes, which were exhibited in extreme cases

6, 8, 9, 11, 12, 13, 14, 15, and 16, showed that more than 99% of both age groups contract the

disease within 90 days. Cases 12, 15, and 16 showcased the worst potential scenarios with over

99% of both age groups being exposed to or contracting COVID-19 before day 20.
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Figure 1:Trajectories of the 8-compartment SEIR models using the parameters of our simulations.

Discussion and Conclusions

Conditional Gaussian Model. The conditional sum of the student cases per county scales lin-

early with the number of cases of the county. This has speculatively important public policy

related consequences, including the possibility of concentrating the testing in schools and using

the scaling factor to estimate the incidence of COVID-19 in the full population.

Age Structured Model. The simulations of our models with parameters in line with those of

Indiana showed that even if adults keep their contact with other adults to a minimum, transmis-

sion from young can present itself to be extremely detrimental to the more at-risk population.

This shows that optimal school reopening strategies can potentially benefit not only the school

population, but the entire community.

Overall Message. Taken in conjunction, these results underline once more the importance

of adopting proper school reopening strategies and how they relate to the diffusion of the

coronavirus outside the school environment. The diffusion of the coronavirus among the school

population has the potential to not only be a strong determinant of the health of the more at

risk population, such as elderly and sick, but also be a proxy for the incidence of COVID-19 in

the community.


