
Figure 3: Absolute error of all the visitor pattern mobility models 

• SafeGraph Inc. point of interest (POI) visitor patterns data
• Google Mobility Report LA County
• 2010 census block group data
• LA Times confirmed cases
• LA County Public Health cumulative infection
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Figure 1: Google Mobility Report LA County data and COVID-19 reproduction rate. 

Figure 2: A snapshot of hourly visitor patterns in SafeGraph data

• M: number of mobility features
• sus(d): susceptible population on date d
• 𝚫𝐈(𝐬, 𝐭): increase in infection from date s to date t.

• 𝐦𝐨𝐛𝐚𝐯𝐠𝒊 𝒔, 𝒕 : date s to t’s average mobility score for 𝑖23 mobility feature
• 𝒔𝒕𝒂𝒓𝒕𝒅,𝒊,𝒋 and	𝐞𝐧𝐝𝐝,𝒊,𝐣	: starting and ending date of 𝑗23 time window for 𝑖23

mobility feature.

Figure 4: MAE of all the inter-regional mobility models 

We also performed manual and agglomerative hierarchical clustering on the SafeGraph visitor patterns
data to build distinct mobility features based on the nature of POI locations.
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Two branches of variations of the SIKJ⍺ model that incorporate
• Inter-region Mobility （original SIKJ⍺ formula）
• Visitor-pattern Mobility. （extended formula, see equation 1）

• Inclusion of mobility features consistently produce lower errors
• Micro-level mobility features outperform macro-level ones.
• The underlying pattern need not be explicitly identified by

location types

Goal

• Does controlling mobility control the spread of an epidemic?
• Simplification: Does the foresight of mobility help us better
predict the spread of an epidemic?


