

HuggingMolecules: an open-source library for transformer-based molecular property prediction

Piotr Gaiński 1 , Łukasz Maziarka 1,2 , Tomasz Danel 1,2 , Stanisław Jastrzębski 1,3

¹Jagiellonian University ²Ardigen ³Molecule.one

Abstract

Large-scale transformer-based methods are gaining popularity as a tool for predicting the properties of chemical compounds, which is of central importance to the drug discovery process. To accelerate their development and dissemination among the community, we are releasing HuggingMolecules – an open-source library, with a simple and unified API, that provides implementation of several state-of-the-art transformers for molecular property prediction. In addition, we add a comparison of these methods on several regression and classification datasets.

Code snippet

```
from huggingmolecules import MatModel, MatFeaturizer
from experiments.src import TrainingModule,
                             get_data_loaders
from torch.nn import MSELoss
from torch.optim import Adam
from pytorch_lightning import Trainer
from pytorch_lightning.metrics import MeanSquaredError
                                                            10
                                                            11
# Build and load the pre-trained model
                                                            12
# and the appropriate featurizer:
                                                            13
model = MatModel.from_pretrained('mat_masking_20M')
                                                            14
featurizer = MatFeaturizer.from_pretrained(
                                                            15
                             'mat_masking_20M')
                                                            16
                                                            17
# Build the pytorch lightning training module:
pl_module = TrainingModule(model,
                   loss_fn=MSELoss(),
                   metric_cls=MeanSquaredError,
                   optimizer = Adam (model.parameters()))
# Build the data loader for the FreeSolv dataset:
                                                            24
train_dataloader,_,_ = get_data_loaders(featurizer,
                          batch_size=32,
                                                            26
                          task_name='ADME',
                                                            27
                          dataset_name=
                          'hydrationfreeenergy_freesolv')
# Build the pytorch lightning trainer and
# fine-tune the module on the train dataset:
                                                            32
trainer = Trainer(max_epochs=100)
trainer.fit(pl_module,
            train_dataloader=train_dataloader)
                                                            36
# Make the prediction for the batch of SMILES strings:
batch = featurizer(['C/C=C/C', '[C]=0'])
                                                            38
output = pl_module.model(batch)
```

References

- [1] Łukasz Maziarka, Tomasz Danel, Sławomir Mucha, Krzysztof Rataj, Jacek Tabor, and Stanisław Jastrzębski. Molecule attention transformer. arXiv preprint arXiv:2002.08264, 2020.
- [2] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang. Self-supervised graph transformer on large-scale molecular data. Advances in Neural Information Processing Systems, 33, 2020.
- [3] Seyone Chithrananda, Gabe Grand, and Bharath Ramsundar. Chemberta: Large-scale self-supervised pretraining for molecular property prediction. arXiv preprint arXiv:2010.09885, 2020.
- [4] Benedek Fabian, Thomas Edlich, Héléna Gaspar, Marwin Segler, Joshua Meyers, Marco Fiscato, and Mohamed Ahmed. Molecular representation learning with language models and domain-relevant auxiliary tasks. arXiv preprint arXiv:2011.13230, 2020.
- [5] Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, et al. Analyzing learned molecular representations for property prediction. *Journal of chemical information and modeling*, 59(8):3370–3388, 2019.

Models

Table 1: Models used in our benchmark.

Model name	Citation	Type	No. params
MAT GROVER ChemBERTa MolBert	[1] [2] [3] [4]	graph-based graph-based SMILES-based SMILES-based	42M 48M/107M 83M 85M
D-MPNN	[5]	graph-based	355k

Datasets

Table 2: Datasets used in our benchmark.

Category	Task type	Compounds	Metric	Split method	from TDC
ADME	regression	642	RMSE	random	yes
ADME	regression	910	RMSE	random	yes
ADME	regression	731	RMSE	random	yes
ADME	regression	6830	MAE	random	no
ADME	classification	578	ROC AUC	random	yes
ADME	classification	640	ROC AUC	random	yes
ADME	classification	765	ROC AUC	random	yes
ADME	classification	2039	ROC AUC	scaffold	no
ADME	classification	7256	ROC AUC	random	yes
	ADME ADME ADME ADME ADME ADME ADME ADME	ADME regression ADME regression ADME regression ADME regression ADME classification ADME classification ADME classification ADME classification ADME classification	ADME regression 642 ADME regression 910 ADME regression 731 ADME regression 6830 ADME classification 578 ADME classification 640 ADME classification 765 ADME classification 2039	ADME regression 642 RMSE ADME regression 910 RMSE ADME regression 731 RMSE ADME regression 6830 MAE ADME classification 578 ROC AUC ADME classification 640 ROC AUC ADME classification 765 ROC AUC ADME classification 2039 ROC AUC	ADME regression 642 RMSE random ADME regression 910 RMSE random ADME regression 731 RMSE random ADME regression 6830 MAE random ADME classification 578 ROC AUC random ADME classification 640 ROC AUC random ADME classification 765 ROC AUC random ADME classification 765 ROC AUC random ADME classification 765 ROC AUC random ADME classification 2039 ROC AUC scaffold

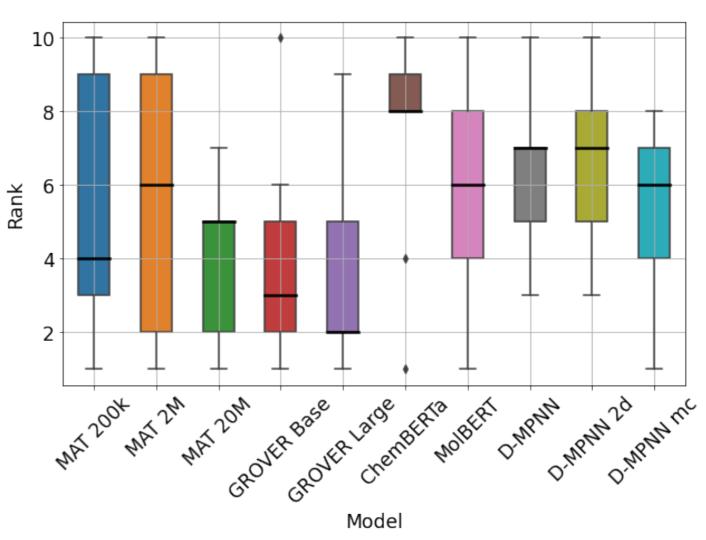

Benchmark results

Table 3: Benchmark results for the regression tasks. As the metric we used MAE for QM7 and RMSE for the rest of datasets.

	FreeSolv	Caco-2	Clearance	QM7	Mean rank
MAT 200k	$.913 \pm .196$	$\textbf{.405}\pm\textbf{.030}$	$.649 \pm .341$	87.578 ± 15.37	5.25
MAT 2M	$.898 \pm .165$	$.471 \pm .070$	$.655\pm.327$	81.557 ± 5.08	6.75
MAT 20M	$\textbf{.854}\pm\textbf{.197}$	$.432 \pm .034$	$.640 \pm .335$	81.797 ± 4.17	5.0
GROVER Base	$.917 \pm .195$	$.419 \pm .029$	$.629 \pm .335$	$\textbf{62.27}\pm\textbf{3.58}$	3.25
GROVER Large	$.950 \pm .202$	$.414 \pm .041$	$\textbf{.627}\pm\textbf{.340}$	64.94 ± 3.62	2.5
ChemBERTa	$1.218 \pm .245$	$.430 \pm .013$	$.647 \pm .314$	177.242 ± 1.81	8.0
MolBERT	$1.027 \pm .244$	$.483 \pm .056$	$.633 \pm .332$	177.117 ± 1.79	8.0
D-MPNN	$1.061 \pm .168$	$.446 \pm .064$	$.628 \pm .339$	74.83 ± 4.79	5.5
D-MPNN 2d	$1.038 \pm .235$	$.454 \pm .049$	$.628\pm.336$	77.91 ± 1.21	6.0
D-MPNN mc	$.995 \pm .136$	$.438 \pm .053$	$\textbf{.627} \pm \textbf{.337}$	75.58 ± 4.68	4.25

Table 4: Benchmark results for the classification tasks. We used ROC AUC as the metric.

	HIA	Bioavailability	PPBR	Tox21 (NR-AR)	BBBP	Mean rank
MAT 200k	$\textbf{.943}\pm\textbf{.015}$	$.660 \pm .052$	$.896 \pm .027$	$.775 \pm .035$	$.709 \pm .022$	5.8
MAT 2M	$.941 \pm .013$	$.712 \pm .076$	$\textbf{.905}\pm\textbf{.019}$	$\textbf{.779}\pm\textbf{.056}$	$.713 \pm .022$	4.2
MAT 20M	$.935 \pm .017$	$.732 \pm .082$	$.891 \pm .019$	$\textbf{.779}\pm\textbf{.056}$	$\textbf{.735}\pm\textbf{.006}$	3.4
GROVER Base	$.931 \pm .021$	$.750 \pm .037$	$.901 \pm .036$	$.750 \pm .085$	$\textbf{.735}\pm\textbf{.006}$	4.0
GROVER Large	$.932 \pm .023$	$\textbf{.747}\pm\textbf{.062}$	$.901 \pm .033$	$.757 \pm .057$	$.728 \pm .005$	4.2
ChemBERTa	$.923 \pm .032$	$.666 \pm .041$	$.869 \pm .032$	$\textbf{.779}\pm\textbf{.044}$	$.717 \pm .009$	7.0
MolBERT	$.942 \pm .011$	$.737 \pm .085$	$.889 \pm .039$	$.761 \pm .058$	$.742 \pm .020$	4.6
D-MPNN	$.924 \pm .069$	$.724 \pm .0644$	$.847 \pm .052$	$.766 \pm .040$	$.726 \pm .008$	7.0
D-MPNN 2d	$.900 \pm .094$	$.712\pm.067$	$.874 \pm .030$	$.775 \pm .041$	$.724 \pm .006$	6.8
D-MPNN mc	$.924 \pm .082$	$.740 \pm .060$	$.869 \pm .033$	$.772 \pm .041$	$.722\pm.008$	6.2

Figure 1: Rank plot for the datasets from our benchmark. We can see that the graph-base transformers outperforms these based on SMILES, moreover they beat D-MPNN, which is the non-transformer state-of-the-art in molecular property prediction tasks.